Unconditional uniqueness for the periodic modified Benjamin–Ono equation by normal form approach
نویسندگان
چکیده
Abstract We show that the solution (in sense of distribution) to Cauchy problem with periodic boundary condition associated modified Benjamin–Ono equation is unique in $L^\infty _t(H^s(\mathbb{T} ))$ for $s>1/2$. The proof based on analysis a normal form obtained by infinitely many reduction steps using integration parts time after suitable gauge transform.
منابع مشابه
Unconditional Uniqueness of Solution for the Cauchy Problem of the Nonlinear Schrödinger Equation
where λ ∈ C and T > 0. Let α > 0 and s ≥ 0 be specified later, and let u0 ∈ H. Suppose that u ∈ C([0, T ];H) with (2) and u satisfies equation (1) in D0((0, T )× R), that is, in the distribution sense. We briefly recall known results on the uniqueness of solution for (1)-(2). In [3], Ginibre and Velo prove that if s = 1 and α < 4/(n− 2), the solution is unique. In [2], Cazenave and Weissler sho...
متن کاملNormal form for odd periodic FPU chains
In this paper we prove that near the equilibirum position any periodic FPU chain with an odd number of particles admits a Birkhoff normal form up to order 4, and we obtain an explicit formula of the Hessian of its Hamiltonian at the fixed point.
متن کاملBirkhoff normal form for the periodic Toda lattice
with potential V (x) = γe + V1x + V2 and γ, δ, V1, V2 ∈ R constants. The Toda lattice has been introduced by Toda [12] and studied extensively in the sequel. It is an FPU lattice, i.e. a Hamiltonian system of particles in one space dimension with nearest neighbor interaction. Models of this type have been studied by Fermi-Pasta-Ulam [FPU]. In numerical experiments they found recurrent features ...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملNormal Form for Spatial Dynamics in the Swift-hohenberg Equation
The reversible Hopf bifurcation with 1:1 resonance holds the key to the presence of spatially localized steady states in many partial differential equations on the real line. Two different techniques for computing the normal form for this bifurcation are described and applied to the Swift-Hohenberg equation with cubic/quintic and quadratic/cubic nonlinearities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2021
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnab079