Unconditional uniqueness for the periodic modified Benjamin–Ono equation by normal form approach

نویسندگان

چکیده

Abstract We show that the solution (in sense of distribution) to Cauchy problem with periodic boundary condition associated modified Benjamin–Ono equation is unique in $L^\infty _t(H^s(\mathbb{T} ))$ for $s>1/2$. The proof based on analysis a normal form obtained by infinitely many reduction steps using integration parts time after suitable gauge transform.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditional Uniqueness of Solution for the Cauchy Problem of the Nonlinear Schrödinger Equation

where λ ∈ C and T > 0. Let α > 0 and s ≥ 0 be specified later, and let u0 ∈ H. Suppose that u ∈ C([0, T ];H) with (2) and u satisfies equation (1) in D0((0, T )× R), that is, in the distribution sense. We briefly recall known results on the uniqueness of solution for (1)-(2). In [3], Ginibre and Velo prove that if s = 1 and α < 4/(n− 2), the solution is unique. In [2], Cazenave and Weissler sho...

متن کامل

Normal form for odd periodic FPU chains

In this paper we prove that near the equilibirum position any periodic FPU chain with an odd number of particles admits a Birkhoff normal form up to order 4, and we obtain an explicit formula of the Hessian of its Hamiltonian at the fixed point.

متن کامل

Birkhoff normal form for the periodic Toda lattice

with potential V (x) = γe + V1x + V2 and γ, δ, V1, V2 ∈ R constants. The Toda lattice has been introduced by Toda [12] and studied extensively in the sequel. It is an FPU lattice, i.e. a Hamiltonian system of particles in one space dimension with nearest neighbor interaction. Models of this type have been studied by Fermi-Pasta-Ulam [FPU]. In numerical experiments they found recurrent features ...

متن کامل

N‎umerical ‎q‎uasilinearization scheme ‎for the integral equation form of the Blasius equation

‎The ‎method ‎of ‎quasilinearization ‎is ‎an ‎effective ‎tool ‎to ‎solve nonlinear ‎equations ‎when ‎some ‎conditions‎ on ‎the ‎nonlinear term ‎of ‎the ‎problem ‎are ‎satisfi‎‎ed. ‎W‎hen ‎the ‎conditions ‎hold, ‎applying ‎this ‎techniqu‎e ‎gives ‎two ‎sequences of ‎coupled ‎linear ‎equations‎ and ‎the ‎solutions ‎of ‎th‎ese ‎linear ‎equations ‎are quadratically ‎convergent ‎to ‎the ‎solution ‎o...

متن کامل

Normal Form for Spatial Dynamics in the Swift-hohenberg Equation

The reversible Hopf bifurcation with 1:1 resonance holds the key to the presence of spatially localized steady states in many partial differential equations on the real line. Two different techniques for computing the normal form for this bifurcation are described and applied to the Swift-Hohenberg equation with cubic/quintic and quadratic/cubic nonlinearities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab079